Represent the complex number z=3+iz=3+iz=3+i in the polar form.


Answer:

2(cosπ6+i sinπ6)2(cosπ6+i sinπ6)2(cosπ6+i sinπ6)

Step by Step Explanation:
  1. We have, [Math Processing Error] The standard polar form of a complex number is r(cosθ+i sinθ)r(cosθ+i sinθ)
    Θ y y' x' x O P(√3, 1)
  2. On comparing zz with the standard polar form of a complex number, we get,
    r cos θ=3r cos θ=3 and r sin θ=1r sin θ=1
    Now, [Math Processing Error] On Adding (2)(2) and (4)(4) we get,
    [Math Processing Error]
  3. Substituting the value of rr in eq (1)(1) and (3)(3) we get,
    cosθ=32cosθ=32 and sinθ=12sinθ=12
    θ=π6θ=π6
  4. Hence, the polar form of the complex number z=3+iz=3+i is 2(cosπ6+i sinπ6)2(cosπ6+i sinπ6).

You can reuse this answer
Creative Commons License