Represent the complex number z=√3+iz=√3+iz=√3+i in the polar form.
Answer:
2(cosπ6+i sinπ6)2(cosπ6+i sinπ6)2(cosπ6+i sinπ6)
- We have, [Math Processing Error]
The standard polar form of a complex number is r(cosθ+i sinθ)r(cosθ+i sinθ)
- On comparing zz with the standard polar form of a complex number, we get,
r cos θ=√3r cos θ=√3 and r sin θ=1r sin θ=1
Now, [Math Processing Error] On Adding (2)(2) and (4)(4) we get,
[Math Processing Error] - Substituting the value of rr in eq (1)(1) and (3)(3) we get,
cosθ=√32cosθ=√32 and sinθ=12sinθ=12
⟹θ=π6⟹θ=π6 - Hence, the polar form of the complex number z=√3+iz=√3+i is 2(cosπ6+i sinπ6)2(cosπ6+i sinπ6).